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EFFECTS OF PAVEMENT TEXTURE ON WET-RUNWAY
BRAKING PERFORMANCE

By Trafford J. W. Leland, Thomas J. Yager,
and Upshur T. Joyner
Langley Research Center

SUMMARY

An extensive test program was conducted at the Langley landing-loads track to
investigate the effect on braking of tire tread pattern and tread materials for a variety
of runway surfaces. Some of the tire test results were excerpted from this program and
are presented to show the importance of runway surface texture in determining braking
friction coefficient levels on wet runways. A technique for measuring the average texture
depth of a given surface is suggested, and a limited correlation is shown between the
texture depth measurements of four runway surfaces and the average friction coefficients
developed by a smooth tire when braking on these wet surfaces. Surface wear due to
traffic and weathering is shown to have a marked influence on the braking friction coeffi-
cient levels attained on wet runways.

INTRODUCTION

A combination of airplane tire, braking system, and runway surface which provides
satisfactory stopping characteristics when the surface is dry may prove to be unsatis-
factory when the surface is damp or flooded with water. This degradation in wet-surface
braking friction can be caused by the lubricating effect of a viscous film of water between
the tire and the runway or by fluid-density effects which become apparent as speed is
increased and hydrodynamic pressures are built up by water trapped between the tire and
the runway (ref. 1). The magnitude of the friction loss in a particular case depends upon
many factors, including speed of operation; tire tread pattern, tread material, and inflation
pressure; and runway water depth and surface texture.

An extensive test program was conducted at the Langley landing-loads track to
investigate the effect on braking of tire tread pattern and tread materials for a variety
of runway surfaces. Some of the tire test results from this investigation have been
excerpted to show how the interaction of tire pressure, forward speed, and runway surface
texture can change the braking friction coefficients developed on damp, and flooded, con-
crete and asphalt surfaces. A method which was developed and used to measure runway



surface texture depth is described, and experimental results which show the effect on
braking of pavement surface wear due to traffic and weathering are presented.

SYMBOLS
d inside diameter of measuring tube, in. (centimeters)
Fp ground drag load, lIb (newtons)
Fy ground vertical load, lb (newtons)
l length of measuring tube, in. (centimeters)
p tire inflation pressure, lb/ in2 (newtons per square centimeter)
W, - W

s1 slip ratio, S
Ve forward ground speed, knots
Vp hydroplaning speed, knots
i instantaneous tire-ground friction coefficient, —E—Q

\
Hav average tire-ground friction coefficient between s; = 0.1 and 0.5
Y max maximum tire-ground friction coefficient
Mekid skidding tire-ground friction coefficient (sy =1.0)
w, free-rolling wheel angular velocity, rad/sec
w instantaneous wheel angular velocity, rad/sec

TEST APPARATUS AND PROCEDURE

The test program was conducted at the Langley landing-loads track, described in
reference 2 and shown schematically in figure 1. The fixture for carrying the 32 x 8.8,
type VII, aircraft tires used in the test is shown schematically in figure 2. As in previous
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braking investigations using this test fixture (for example, refs. 3 and 4), vertical and
drag loads were measured at the axle and converted to ground loads by using the vertical
and drag accelerometers shown in figure 2, while brake torque was measured separately
by a system of torque links. Brake pressure was applied through an orifice to increase
the brake-pressure rise time in order to make it possible to record and compute a com-
plete time history of load and motion from free roll to locked wheel for each brake cycle.

Braking Test Surfaces

The test surface was arranged as shown schematically in figure 3 to provide a
variety of runway surfaces ranging from very smooth to very rough. The surfaces are
described as smooth concrete, textured concrete, small-aggregate asphalt, large-
aggregate asphalt, and ice. Following wheel drop and spin-up on the 100-foot (30.5-meter)
ramp, brake cycles were initiated on each test surface as the carriage proceeded down
the track. The first braking surface (fig. 4(a)) was a very smooth, steel-trowel-finish
concrete. The second surface (fig. 4(b)) was concrete which had been bag-dragged to
provide a small-scale surface texture and was probably smoother than runway surfaces
commonly in use today. The small-aggregate asphalt surface (fig. 4(c)) had an aggregate
or stone size within accepted construction practices for runways today. The large-
aggregate asphalt surface shown in figure 4(d) had an aggregate or stone size outside
accepted runway practices, although the largest stone size did not exceed approximately
0.5 inch (1.3 ¢cm). The ice surface shown in figure 4(e) was maintained by a refrigeration
system which circulated brine through pipes located approximately 2 inches (5.1 cm)
below the ice surface.

The first four braking surfaces were provided with water outlets at intervals along
the track, and dams were placed along the edges to maintain the desired water level. This
system insured the same wetness conditions for all tests, but because of differences in
runway elevation characteristics, the actual water depth over the surface varied from 0.1
to 0.2 inch (0.25 to 0.51 cm). Cross dams were used during the high-speed tests to pro-
vide a dry area for wheel spin-up between braking cycles. The ice surface was main-
tained at essentially the same condition throughout the investigation with the surface being
sprayed lightly with water just prior to the test to insure a wet surface.

Test Tires

The tires used were 32 X 8.8, type VII, 22-ply-rating, aircraft tires having the tread
configurations shown in figure 5. The tires were specially molded for this test and had
all-rubber treads (as opposed to fabric-reinforced treads) formed of a natural rubber
compound. Tire I (fig. 5(a)) had a smooth tread whose thickness was equal to that of a
new tire but had no tread pattern. Tire II (fig. 5(b)) had three equally spaced straight



circumferential grooves approximately 0.5 inch (1.3 em) in width, and tire II (fig. 5(c))
had four similar 0.5-inch (1.3-cm) grooves.

Test Procedures

Each tire or tire—test-surface combination was tested at nominal forward velocities
of 25, 50, 75, and 100 knots. The smooth tire (tire I) was tested at intervals throughout
the program as a control tire to detect any significant changes in test environment. Data
measured and recorded manually for each run included tire pressure, ambient tempera-
ture, wind condition, water depth, and ice-surface temperature and condition. During the
run, continuous measurements of vertical load, drag load, brake torque, brake pressure,
carriage forward velocity, and wheel angular displacements, velocity, and acceleration
were recorded on an 18-channel oscillograph on board the carriage.

PRESENTATION OF DATA

General Considerations

Instantaneous values of tire-ground friction coefficient @ were plotted for each
brake cycle from free roll (slip ratio of 0) to full skid (slip ratio of 1.0). The data pre-
sented will express braking friction coefficient in terms of the average tire-ground
friction coefficient p,y, illustrated in figure 6. This parameter is defined as the average
coefficient of friction obtained in the slip-ratio range of 0.1 to 0.5. Presenting the data
in this manner tends to minimize the effects of localized differences in runway surface
character covered during each brake cycle.

In those cases where comparisons are made between runway and tire conditions,
successive test runs were chosen to illustrate the points under discussion and to minimize
the effect of runway surface changes.

Dry-Runway Braking Effects

The number of dry-runway braking runs was limited because of prohibitive tire
wear and runway surface wear. The results of these dry-runway tests are presented in
figure 7 for tires II and III braking on the five test surfaces described in the preceding
section. The ice surface is not dry but is included for comparison, as is the dry-runway
rolling-resistance curve obtained from reference 4 for a similar tire. Although tires II
and I have different tread patterns, the results of reference 3 indicate that tread pattern
has very little effect on dry-runway braking. Tire II, operating at a tire inflation pres-
sure of 140 pounds per square inch (97 N/cm?2) and vertical load of 12 000 pounds
(53 400 N), developed significantly higher friction coefficients than did tire III operating
at a tire inflation pressure of 290 pounds per square inch (200 N/cm2) and vertical load



of 13 200 pounds (58 700 N). This difference in friction coefficient agrees with previous
work (ref. 5), which indicated that for dry-runway braking, the friction coefficient
increased as tire pressure decreased, and is the effect of ground bearing pressure. Note
that the ground bearing pressure for tire II is considerably lower than that for tire III.

No consistent variation of friction coefficient with variations in runway surface
character seems to exist, with the exception of the smooth runway. These data points
are in doubt, however, since the smooth surface was closest to the catapult, and at the
higher speeds and/or with a following wind, this surface could easily have become con-
taminated with water sprayed from the jet catapult. Therefore, the lines shown in fig-
ure 7 were faired through the remaining test surfaces, and these lines will be used when
other data are compared with dry-runway braking test results.

Damp-Runway Braking Effects

Although no significant differences in dry-runway braking friction coefficients were
observed on the various textured test surfaces, figure 8 shows a pronounced surface tex-
ture effect and a large degradation in friction coefficient as a result of the addition of a
small amount of water to the test surface. For this series of tests, a damp surface was
obtained by wetting the entire surface until uniform discoloration was noted and then
brushing out all standing water just prior to the run. The surface in this condition closely
resembled a runway as it might look following a heavy dew. The smooth tire (tire I) used
for this series was inflated to 140 pounds per square inch (97 N/cm2) and carried a ver-
tical load of 12 000 pounds (53 400 N).

When moisture is present, as shown in figure 8, surface character plays a signifi-
cant role. Friction losses on the damp asphalt surfaces are on the order of 25 percent
of the dry-surface values, but the smooth concrete reveals an almost total loss of avail-
able friction coefficient at the higher speeds (compare with the rolling-resistance coef-
ficients shown in fig. 7). Since there was no standing water, it would seem that these large
losses in braking effectiveness must be due to viscous, or lubricating-film, effect rather
than a fluid-density effect. It is thought that the data in figure 8 show that a rougher
textured surface tends to break up or penetrate through more of the fluid film than does a
smooth surface because, in general, the friction coefficients shown are higher for the
rougher surfaces.

Flooded-Runway Braking Effects

The difference between the viscous effects noted in figure 8 and fluid-density effects,
which occur in significant water depths, is shown in figure 9 in which the results of
braking the smooth tire (tire I) on the smoothest and roughest test surfaces are compared
for damp-runway and flooded-runway conditions. (The term "'flooded" in this case means



that the water depth on the test surface varied from 0.1 to 0.2 inch (0.25 to 0.51 cm).)

As shown in figure 9, at low speeds on the large-aggregate asphalt surface, there is little
difference between the friction coefficient for the damp-runway and flooded-runway con-
ditions. This fact indicates a predominant viscous fluid-film effect. As speed is
increased, fluid-density effects increase and cause partial hydroplaning and a significant
decrease in friction coefficient. Near the hydroplaning speed, as predicted by the method
of reference 1, the available tire-ground friction drops to a very low value as the entire
footprint area becomes supported by the water.

The smooth-concrete results in figure 9 show little significant difference with
greater water depth and indicate that on this very smooth surface a slight amount of
moisture provides a viscous film which remains unbroken by the smooth tire, so that the
addition of more water causes very little change in friction coefficient.

Effect of Ground Bearing Pressure

A definite ground bearing pressure effect was observed during braking on a dry
runway (fig. 7) and the same bearing pressure effect can be noted when braking occurs
on a flooded runway, as shown in figure 10. This figure compares the braking friction
developed by the smooth tire (tire I) braking on three of the test surfaces at two condi-
tions of vertical load and tire inflation pressure. At the lower speeds on the rougher
surfaces, a ground bearing pressure effect similar to that shown in figure 7 can be noted
with the lower pressure resulting in somewhat higher average friction coefficients.
However, as forward speed is increased and fluid-density effects become predominant, a
more rapid degradation in tire-ground friction can be noted for the lower tire inflation
pressure as the predicted hydroplaning speed (ref. 1) is approached. Although the
hydroplaning speed at the higher tire pressure is beyond the speed capability of the test
carriage, the results in figure 10 indicate that large losses in braking friction coefficient
can be delayed to a higher speed by increasing the tire inflation pressure, at the expense
of somewhat lower friction levels at the lower speeds.

Braking on the smooth concrete surface, as shown in figure 10, appears quite
insensitive to ground bearing pressure. Thus, it can be inferred that the pressure
necessary to break the viscous fluid film is considerably greater than any realistic value
of tire inflation or ground bearing pressure. However, as indicated previously, this film
may be broken by providing areas of extremely high local bearing pressure in the tire-
ground contact region, such areas being provided by pavement texture, as discussed
previously, by improved trend patterns or by pavement grooving.

The effect of pavement wear due to traffic and weathering is illustrated by com-
paring figures 9 and 10. In figure 10, the smooth tire (tire I) was tested on the flooded
surfaces at the two conditions of vertical load and tire pressure shown. Three months



and 140 test runs later, the smooth tire (tire I) was again tested at the smaller vertical
load and tire pressure on flooded and damp surfaces as shown in figure 9. The difference
in friction coefficient on the flooded surfaces in figures 9 and 10 is then due to pavement
texture changes caused by traffic and weathering during the period between the two tests.

MEASUREMENTS OF SURFACE TEXTURE

A Method for Evaluating Surface Texture

The foregoing results have clearly indicated that runway surface texture has a
major effect on the wet-runway braking friction coefficient developed by a tire. It is
extremely difficult to convey a meaningful word description of a given surface, and even
the photographs shown in figure 4 do not permit any sort of rating or classification of the
surface or provide the reader with a clear indication of the actual roughness or smooth-
ness of the surface. In an attempt to provide a quantitative measure of the effective
runway surface roughness, a simple method has been evolved with the use of the apparatus
shown in figure 11. Essentially, this method consists of working a known volume of
grease into the runway surface and measuring the resulting grease-covered area.
Dividing the initial grease volume by the area thus measured gives an average runway
surface texture depth. Details of the apparatus and the procedure used in applying the
method are discussed in the appendix.

Correlation of Surface-Texture Measurements

The method previously described should, for most reliable results, be statistical
in nature with many different samples being taken of the surface. However, the limited
length of the test sections used in this investigation made it possible to take only one
sample on each of the four surfaces. The results were most encouraging, as shown in
figure 12 in which the average friction coefficient developed on a flooded surface by the
smooth tire at four forward speeds is plotted against the average texture depth for the
four surfaces investigated. Increasing texture depth, or surface roughness, is seen to
improve tire-ground friction at all speeds tested, and at the lower speeds, a friction level
which is nearly equal to the dry-runway friction coefficients shown in figure 7 is reached.
This effect probably accounts for the leveling off of the curve near the roughness level of
the small-aggregate asphalt surface and suggests some speed-dependent limiting value
of surface roughness beyond which no great improvement in braking can be realized, and
the rougher surface might well increase tire wear.



Measurements of Surface Wear

The correlation of friction coefficients with surface measurements obtained by the
grease technique was made coincidental with the first series of runs on the smooth con-
trol tire (tire I). The results of this correlation were so encouraging that the method
was applied at intervals throughout the remainder of the testing period. The construction
of the test carriage and fixture (figs. 1 and 2) constrained the test tire to the same path
for each run. Thus, the traffic over the test section can be evaluated quite closely and is
summarized in table I. The results of the continuing surface-texture studies are shown
in figure 13 in which the average texture depths as measured by the grease technique for
the four surfaces are plotted against the total number of passes made over each surface
prior to the measurement. Although there is some scattering of data in figure 13, prob-
ably due to the restricted number of samples, a change in surface character is noted
for the three rougher surfaces and little change is noted for the smooth concrete surface.
This surface change is taken to be a deterioration of the surface, since the average tex-
ture depth is becoming smaller. The surface change undoubtedly arises from a com-
bination of traffic and weathering, and although the two effects cannot at this time be
separated, a time scale is included at the bottom of figure 13 for reference.

The smooth control tire (tire I) was tested at approximately the intervals shown by
the vertical lines in figure 13. In figure 14, the average friction coefficient developed by
the smooth tire on each of the four test surfaces at four nominal forward velocities shows
how the measured surface wear affected the braking friction levels attained by this tire.
At the higher speeds, the large-aggregate asphalt surface (fig. 14(a)) showed the greatest
degradation in braking friction coefficient, and as shown in figure 13, this surface also
experienced the greatest change in surface character. The small-aggregate asphalt
(fig. 14(b)) and the textured concrete (fig. 14(c)) show similar trends and again the trends
are reflected by the surface-wear measurements shown in figure 13.

The smooth concrete, shown in figure 14(d), exhibits somewhat different character-
istics in that the friction coefficient tends to increase slightly with increasing surface
wear, although little change was noted in the smooth concrete surface-texture measure-
ments of figure 13. This increase is thought to be due to the peculiar way in which the
smooth concrete surface weathered. The surface of the concrete developed hairline
cracks resembling, in the final stages, a mosaic pattern. It is believed that the viscosity
of the grease used in the texture measurements made the measurements insensitive to
these cracks but that the cracks did offer a small measure of relief to the water trapped
between the tire and the ground and, thus, improved the friction coefficient.



Other Surface-Texture Considerations

The suggested surface-texture measurement technique is, by its nature, insensitive
to the type or configuration of the surface texture being measured. Surface texture con-
figuration, however, does have a pronounced effect on the friction level developed, as
shown in figure 15, in which the average friction coefficient developed by the smooth tire
on the four flooded test surfaces is plotted against the measured texture depth of the
surfaces. The velocity lines are faired in to show trends only. In figure 13 texture depth
was seen to decrease with wear on the rougher surfaces. Figure 15 indicates that the
texture depth of the large-aggregate asphalt surface degraded with wear to a level nearly
equal to the new, small-aggregate asphalt surface (area A); yet there is a distinct dif-
ference in friction level developed by the smooth tire. This difference must then be due
to some surface texture characteristic other than depth and is thought to be caused by
differing texture shapes. The asperities in the large-aggregate asphalt probably become
polished with wear and, while still large enough to give large values of texture depth, were
not as rough as the asperities in the new, small-aggregate asphalt surface. The same
parallel can be drawn between the worn small-aggregate asphalt surface and the textured
concrete when about half worn (area B in fig. 15). In this case, the measured texture
depth was exactly the same for the two surfaces, but the greater braking friction developed
on the asphalt surface clearly indicates that the braking performance on a given surface
cannot be accurately predicted on the basis of texture depth alone.

The effect of operating speeds over a given surface is also clearly evident from
figure 15. In these tests, with a tire inflation pressure of 140 pounds per square inch
(97 N/cmz), the predicted hydroplaning speed, by the method of reference 1, is 106.5 knots.
As the tire approaches this speed, 100 knots in figure 15, the character of the pavement
surface is seen to have a rather small effect as a result of partial hydroplaning of the tire
(ref. 1). As speed is increased, more and more of the tire footprint is forced off the
pavement, and this suggests that for each tire there is a critical speed, based on tire
inflation pressure, at which the pavement surface character is of minor importance.
Therefore, to determine a given level of surface texture roughness which will provide
acceptable friction levels when wet, the average surface texture depth, the configuration
of the surface texture, and the anticipated operational speeds over the surface must be
considered.

CONCLUDING REMARKS

The results presented have shown the effects which differences in runway surface
texture can have on the wet-runway braking friction coefficients developed by aircraft
tires. A technique for quickly and easily obtaining numbers to define the average texture
depth of a given surface has been suggested. Although the method suggested is imprecise
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because the only texture characteristic measured is average depth, a limited correlation
between texture depths thus obtained for a surface and average friction coefficient devel-
oped by a tire on the same surface has given some confidence in the method. Operational
speed has been shown to be of importance in determining the wet-runway friction levels
attained on a given surface. Surface wear due to traffic and weathering has been demon-
strated to have a marked influence on the friction coefficient levels attained with the
same tire run at different times during the test program.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., July 6, 1967,
126-61-05-01-23.
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APPENDIX

A PROPOSED SIMPLE METHOD FOR QUANTITATIVELY MEASURING
RUNWAY SURFACE TEXTURE

Review of the Problem

It has long been recognized that the friction forces which a pneumatic tire can
develop for the purposes of braking, cornering, or driving are greatly influenced by the
finish of the runway or road surface. In past work on the measurement of tire-runway
friction, the nature of the ground test surface has generally been defined qualitatively but
a quantitative measure of the effective runway roughness has been lacking. Work toward
the development of such a quantitative measure of roughness has come rather slowly, in
spite of its recognized need. Recently, however, essentially the same idea has been
applied in several places. Meyer (refs. 6 and 7) published a description of a method for
measuring surface roughness by use of a profilometer, which measures the roughness
along a line on the surface. The friction coefficient can then be correlated either with
the average height of the roughness peaks or asperities, or with the drainage area, which
is taken to be the integrated sum of the cross-sectional area of the voids under a line
connecting the peaks of the major asperities along the length of the profile. An outflow
meter, designed to assess the drainage ability of various surfaces, has been developed by
D. F. Moore and is described in reference 8. A ''sand patch' method of classifying sur-
face textures by measuring the quantity of fine sand that can be worked intc the surface
with a straightedge is presented in reference 9.

Langley Technique for Measuring Surface Roughness

At the Landing and Impact Branch of Langley Research Center, a system similar
in principle has been tried. A selected volume of grease is applied to the runway or road
surface between parallel lines of masking tape and then worked into the runway voids with
an aluminum squeegee faced with rubber having a hardness approximately equivalent to
that of tire tread rubber. Dividing the volume of grease used by the runway area covered
gives an average depth of the runway voids. This average depth of voids is taken to be a
measure of surface roughness.

A photograph of a measurement being taken by the grease method of measuring
runway or road roughness is presented in figure 11. The selected volume of grease has
been worked into the voids in the runway surface, and the operator is again going over the
surface with the rubber squeegee to be sure that no excess grease has been left. The
technique shown has proved to be easy to apply and convenient for field applications.
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APPENDIX

In the description to follow, equations are given to convert measurements taken and
obtain average depth of runway roughness in millimeters. The lines of masking tape
were placed about 10 centimeters or 4 inches apart and the distance along the lines
covered by the grease was measured to obtain the area covered. The effective roughness
was then obtained by dividing the known volume of grease applied by the area covered.

A convenient volume of grease has been found to be either 15 cubic centimeters or
1 cubic inch. A simple way of measuring this volume is given in the following section
entitled "Description of equipment.”

After the measurements are obtained, the following equations can be used to cal-
culate the average depth of the runway surface voids:

10 X Volume of grease (cucm)

Roughness (mm) = (A1)

Area covered (sqcm)

or
25.4 X Volume of grease (cu in.)

Roughness (mm) = (A2)

Area covered (sq in.)

Description of equipment.- The equipment required is limited to that shown in fig-
ures 11 and 16. On the left of figure 16 is shown the tube which is used to measure the
selected volume of grease. On the right is shown the tight-fitting plunger which is used

to expel the grease from the tube, and in the center is shown the rubber squeegee which

is used to work the grease into the voids in the runway or road surface. The sheet rubber
of the squeegee was cemented to a piece of aluminum for ease in use. The grease used
was a general purpose lubricant. At this time it is thought that any general purpose
grease can be used.

Use of equipment.- The tube for measuring the selected volume of grease is packed

full with a tool like a putty knife in such a way as to avoid entrapped air, and the ends are
squared off as shown in figure 17. The grease is then expelled from the measuring tube
with the plunger and deposited between previously placed lines of maskmg tape. Itis
then worked into the voids of the runway surface with the rubber squeegee. Care is taken
that no grease is left on the masking tape or on the squeegee. Measurements are then
taken, the area is computed, and the roughness in millimeters is obtained by use of either
equation (Al) or equation (A2).

Selection of measuring tube.- As a convenience in the selection of the length of the

measuring tube, figure 18 gives the relation between the tube inside diameter and tube
length for an internal tube volume of 1 cubic inch or 15 cubic centimeters. The plunger
can be made of cork, rubber, or other resilient material to achieve a tight fit in the
measuring tube.
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Figure 1.- Schematic of the Langley landing-loads track.
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Figure 3.- Schematic of test section.
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{a) Smooth concrete surface.

(b} Textured concrete surface.

Figure 4.- Photographs of test runway surfaces. L-67-6648
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(c) Small-aggregate asphalt surface.

(d) Large-aggregate asphalt surface.

Figure 4.- Continued.

L-67-6649



(a) Tire 1.

(e} lce runway surface.

Figure 4.- Concluded.

(b) Tire 1.

Figure 5.- Tires used in investigation.

(c) Tire 11,

L-67-6650
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Figure 6.- Schematic comparison of various friction coefficients.
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Figure 7.- Effect of surface texture and ground bearing pressure on dry-runway braking effectiveness for tires Il and I11.
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Figure 8.- Effect of surface texture on damp-runway braking effectiveness. Smooth tire (tire I); vertical load, Fy = 12 000 Ib (53 400 N});
tire inflation pressure, p = 140 Ibfin2 (97 N/cm?).



€2

Flooded Damp

runway runway
----- ®------ Smooth concrete —O
— — ~—-fA— — —-Llarge-aggregate asphalt 7\
1.0
8
Average 6F
friction
coefficient,
Fav
e
Hydroplaning speed, \/'P
(ref. 1)
2
0 S |
0 120

Ground speed,V knots

G)

Figure 9.- Comparison of surface texture effects on damp and flooded runways. Flooded water depth = 0.1 to 0.2 inch (0.25 to 0.51 cm); smooth tire (tire 1);
vertical load, Fy =12 000 Ib {53 400 N); tive inflation pressure, p = 140 ibfin2 (97 N /em?2).
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Figure 10.- Effect of ground bearing pressure on fiooded-runway braking effectiveness for a smooth tire (tire 1). Water depth = 0.1 to 0.2 inch (0.25 to 0.51 cm).
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Figure 12.- Effect of measured surface roughness on average friction coefficient developed on a flooded runway. Smooth tire (tire 1); vertical load, Fy = 12000 b (53 400 N);
tire inflation pressure, p = 140 Ib/in2 (97 N/cm2); water depth = 0.1 to 0.2 inch (0.25 to 0.51 cmy.
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Figure 13.- Experimental measurements of surface wear during the test program.
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(a) Large-aggregate asphalt surface.

Figure 14.- Effect of surface wear on the friction coefficient developed on the four surfaces tested. Smooth tire (tire I); vertical load, Fy = 12 000 ib (53 400 N);
tire inflation pressure, p = 140 Ib/in? (97 Nfcm?), water depth = 0.1 to 0.2 inch (0.25 to 0.51 cm).



6¢

Average
friction
coefficient,
Mav
s
.2

Initial test

Vg » knots

25 C

50 [I-e__

75 <>\-\_\

-
-
-—
-
-
-
-~
-
-

Second test

Third test

m————
~ O
100 - - - - - — —_ !f -
i 1 | - i 1 i 1 1 J
20 40 60 80 100 120 140 160 180

Number of passes
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Figure 14.- Continued.
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Figure 14.- Continued.
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Figure 15.- Effect of measured surface roughness on average friction coefficient developed on a flooded runway. Smooth tire (tire [); vertical load, Fy = 12 000 Ib (53 400 N);

tire inflation pressure, p = 140 Ib/in2 (97 N/cmz); water depth = 0.1 t0 0.2 inch (0.25 to 0.51 cm).
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Figure 16.- Grease-volume measuring tube, plunger, and rubber squeegee.

1-65-1868

Figure 17.- Measuring tube filled with grease.

L-65-1869
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Figure 18.- Measuring-tube dimensions to measure 1 cubic inch or 15 cubic centimeters of grease.
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